Growth analysis in children with PFIC treated with the ASBT inhibitor maralixibat

INDIGO Study

Richard Thompson, Deirdre Kelly, Sanjay Rajwal, Alexander Miethke, Nisreen Soufi, Christine Rivet, Irena Jankowska, Cara Mack, Thomas Jaecklin, Robert H Squires, Kathleen M Loomes
Richard Thompson,1 Deirdre Kelly,2 Sanjay Rajwal,3 Alexander Miethke,4 Nisreen Soufi,5 Christine Rivet,6 Irena Jankowska,7 Cara Mack,8 Thomas Jaecklin,9 Robert H Squires,10 Kathleen M Loomes11

1. Institute of Liver Studies, King’s College London, London, UK
2. Liver Unit, Birmingham Women’s & Children’s Hospital, Birmingham, UK
3. Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds, UK
4. Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
5. Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
6. Service d’Hépatologie, Gastroentérologie et Nutrition Pédiatriques, Hôpital Femme-Mère-Enfant, Bron, France
7. Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children’s Memorial Health Institute, Warsaw, Poland
8. Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
9. Mirum Pharmaceuticals AG, Basel, Switzerland
10. Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
11. Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
Treatment of children with progressive familial intrahepatic cholestasis

• **Progressive Familial Intrahepatic Cholestasis (PFIC)**
 - A progressive childhood cholestatic liver disease
 - Caused by rare genetic defects of bile acid excretion
 - Leading to debilitating pruritus, lipid-soluble vitamin deficiency, growth deficit

• **Standard of care**
 - Pharmacotherapy is only partially/temporarily effective and off-label
 - Partial external biliary diversion (PEBD) reduces serum bile acids (sBA) and pruritus, and improves growth, but may have serious complications
 - Liver transplantation can treat pruritus, but complications/recurrence are not uncommon in PFIC

• **Maralixibat**
 - A potent, minimally absorbed, selective ASBTi (inhibitor of the ileal apical sodium-dependent bile acid transporter)
 - Pharmacological interruption of enterohepatic bile acid recirculation may benefit patients with PFIC
Maralixibat is a potent, selective inhibitor of the ileal apical sodium-dependent bile acid transporter (ASBT)

Clinical effects of ASBT inhibition

- ASBT inhibitors, including maralixibat, decrease pruritus, sBA and cholesterol, and increase C4 in PBC\(^2\)-\(^4\) and improve growth in a cholestasis model\(^5\)
- Maralixibat studies show a trend towards decreases in pruritus in ALGS\(^6\)

Maralixibat interrupts recirculation of bile acids to the liver\(^1\)

Maralixibat redirects bile acid flow by inhibiting reuptake of bile acid

Maralixibat increases fecal bile acid excretion\(^1\)

ALGS, Alagille syndrome; C4, 7-α-hydroxy-4-cholesten-3-one; PBC, primary biliary cholangitis.

INDIGO: phase 2, open-label, safety and efficacy study of maralixibat in children with PFIC

Results from a pre-specified 48-week analysis are presented (subsequent data are preliminary and are not available for all patients)
Key entry criteria and efficacy endpoints

Key inclusion criteria
- 1–18 years old
- PFIC phenotype
- PFIC genotype (biallelic \textit{ABCB11} or \textit{ATP8B1} mutation)

Key efficacy endpoints
- Height and weight
- Cholestasis biomarkers
 - sBA (primary efficacy measure)
 - ALT, AST, bilirubin, C4
- Pruritus assessments
 - ItchRO(Obs) score (caregiver-rated pruritus; 0 = none, 4 = severe)
 - CSS score (investigator-rated, 0–4)
- HRQoL assessment
 - PedsQL total score (parent-rated, 0–100)

Key exclusion criteria
- PEBD or ileal exclusion
- Liver transplant
- Decompensated cirrhosis

ALT, alanine aminotransferase; AST, aspartate aminotransferase; CSS, clinician scratch scale; HRQoL, health-related quality of life; ItchRO(Obs), Itch-Reported Outcome (Observer); PedsQL, Pediatric Quality of Life Inventory
Disposition, demographics, disease characteristics

Participant characteristics

<table>
<thead>
<tr>
<th></th>
<th>PFIC1, n = 8</th>
<th>PFIC2, n = 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP8B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCB11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median age (range), year</td>
<td>2.0 (1–7)</td>
<td>4.0 (1–13)</td>
</tr>
<tr>
<td>Boys, n (%)</td>
<td>6 (75)</td>
<td>8 (32)</td>
</tr>
<tr>
<td>White, n (%)</td>
<td>6 (75)</td>
<td>20 (80)</td>
</tr>
<tr>
<td>Mean (SD) z-scores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>−2.96 (1.47)</td>
<td>−1.29 (0.98)</td>
</tr>
<tr>
<td>Weight</td>
<td>−2.70 (2.82)</td>
<td>−0.63 (0.88)</td>
</tr>
</tbody>
</table>

Disposition to week 48

<table>
<thead>
<tr>
<th>Participants (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reached week 48</td>
</tr>
<tr>
<td>Efficacy data available</td>
</tr>
<tr>
<td>PFIC1</td>
</tr>
<tr>
<td>PFIC2</td>
</tr>
<tr>
<td>Maralixibat dose</td>
</tr>
<tr>
<td>280 µg/kg/day</td>
</tr>
<tr>
<td>140 µg/kg/day</td>
</tr>
<tr>
<td>< 140 µg/kg/day</td>
</tr>
</tbody>
</table>

One patient receiving 280 µg/kg/day had a treatment interruption and was re-escalating at week 48
After 48 weeks of treatment:

- Significant pruritus\(^a\) improvement
- Trend towards sBA improvement
- Trend towards QoL improvement
- No change in ALT or bilirubin

<table>
<thead>
<tr>
<th></th>
<th>Baseline Mean (range)</th>
<th>Week 48 Mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ItchRO(Obs)</td>
<td>2.3 (0.1, 3.8)</td>
<td>-1.1 (-1.5, -0.6)</td>
</tr>
<tr>
<td>CSS</td>
<td>2.9 (0, 4)</td>
<td>-1.3 (-2.0, -0.6)</td>
</tr>
<tr>
<td>sBA [µmol/L]</td>
<td>381 (34, 602)</td>
<td>-59 (-157, 39)</td>
</tr>
<tr>
<td>PedsQL total</td>
<td>62.9 (34.5, 85.9)</td>
<td>4.4 (-4.0, 12.7)</td>
</tr>
<tr>
<td>C4 [ng/L]</td>
<td>4.6 (0.3, 47.3)</td>
<td>7.7 (-0.8, 16.1)</td>
</tr>
</tbody>
</table>

\(^a\) Pruritus measured by ItchRO(Obs)

QoL: Quality of Life as measured by PedsQL; sBA: serum bile acids; CSS: Clinician Scratch Scale

Part of the data presented by Thompson et al., AASLD 2017
Profound/sustained treatment response in n = 6

Response criteria:
- sBA levels – normalized (≤ 8.5 µmol/L; n = 4) or reduced ≥ 70% from baseline (n = 2) AND
- ItchRO(Obs) – no pruritus (n = 2) or improved ≥ 1.0 points from baseline (n = 4)

Responder characteristics:
- All non-truncating PFIC2 (ABCB11) mutations, all on 280 µg/kg/day; no other predictive characteristics
- ALT, AST and bilirubin normalized, if elevated at baseline (ALT remained mildly elevated in responder F/1)

Intercurrent illnesses in responders F/4, M/3 and F/1
Height z-scores increased in PFIC2 responders vs decreased in partial/non-responders

*a z-score: number of standard deviations that a measure deviates from the mean value of healthy age-matched controls

*\(p < 0.05, **p < 0.001 \) vs partial/non-responders, post hoc ANCOVA
Weight z-scores increased in PFIC2 responders vs decreased in partial/non-responders

- Responders
- Partial/non-responders

Mean (SD) change from baseline in height z-score

* $p < 0.05$, ** $p < 0.001$ vs partial/non-responders, post hoc ANCOVA

Responder, n
6 6 6 6 6 6 5 5

Partial/non-responder, n
19 19 17 16 14 11 8

*z-score: number of standard deviations that a measure deviates from the mean value of healthy age-matched controls
Improvements in growth may be related to disease modifications induced by maralixibat

- Possible explanations for growth increases:
 - Pruritus relief?
 - Improved sleep?
 - Greater absorption of fats due to modified bile acid profile in the gut?

- Growth spurt with maralixibat comparable to those documented after PEBD1,2 or liver transplantation3,4

Improvement of lipid profile in responders

- Response is associated with improvement in lipid profiles

Change from baseline to week 72

- Changes in the serum lipid profile with maralixibat are comparable to those reported after PEBD\(^1\)
- ASBT inhibition upregulates hepatic LDL-receptor mRNA levels in a piglet model\(^2\)

Higher doses may lead to higher response rate

- Protocol amendment doubled maralixibat dose to 280 µg/kg BID
- 7th responder with PFIC2 manifested on BID treatment
- Growth benefit was reproducible after meeting response criteria

- Change in z-scores after starting BID dosing:
 - Height: +0.93
 - Weight: +0.34
Summary and conclusions

• Maralixibat leads to marked treatment benefit in a subset of children with PFIC2
 - Improvement in growth
 - Normalization or substantial reduction in sBA levels
 - Disappearance or substantial reduction in pruritus
 - Normalization of bilirubin and liver enzyme levels, if elevated at baseline
 - Improvement in lipid profile
 - Improvement in HRQoL

• Improvement in growth may be related to reductions in pruritus, better sleep or better fat absorption and may indicate disease-modifying potential of maralixibat

• A phase 3 study will be conducted to further investigate maralixibat in children with PFIC
Acknowledgments

• King's College London, UK
• Birmingham Children's Hospital, UK
• Leeds Teaching Hospitals NHS Trust, UK
• Cincinnati Children's Hospital, OH
• Children’s Hospital Los Angeles, CA
• Hôpital Femme-Mère-Enfant, Bron, France
• Children's Memorial Health Institute, Warsaw, Poland
• Children's Hospital Colorado, Aurora, CO
• Children's Hospital of Pittsburgh, PA
• Children's Hospital of Philadelphia, PA