Durability of Treatment Effect with Long-Term Maralixibat in Children with Alagille Syndrome: 4-Year Safety and Efficacy

ICONIC Study

Emmanuel Gonzales

Conflicts of interests

- Consultancy: Albireo, CTRS, Mirum Pharmaceuticals
Emmanuel Gonzales,1 Ekkehard Sturm,2 Michael Stormon,3 Etienne M. Sokal,4 Winita Hardikar,5 Florence Lacaille,6 Dorota Gliwicz-Miedzińska,7 Loreto Hierro,8 Thomas Jaecklin,9 Pamela Vig,10 Nirav K. Desai,11 Alejandro Dorenbaum,12 Ciara Kennedy,13 Alastair Baker,14 Emmanuel Jacquemin1

1. Hépatologie Pédiatrique, Hôpital Bicêtre, AP-HP, Université Paris Sud - Paris Saclay, Paris, France
2. University Hospital for Children and Adolescents, Paediatric Gastroentrology / Hepatology, Tübingen, Germany
3. The Children’s Hospital at Westmead, Department of Gastroenterology, Westmead, Sydney, Australia
4. Cliniques Universitaires Saint-Luc, Gastropédiatrie, Brussels, Belgium
5. The Royal Children’s Hospital Melbourne, Department of Gastroenterology, Parkville, Australia
7. Children’s Memorial Health Institute, Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Warsaw, Poland
8. Hospital Universitario La Paz, Servicio de Hepatologia y Trasplante, Madrid, Spain
9. Mirum Pharmaceuticals, Basel, Switzerland
10. Mirum Pharmaceuticals, Foster City, CA
11. Takeda Pharmaceuticals, Lexington & Cambridge, MA
12. Stanford University, Palo Alto, California
13. Amplyx Pharmaceuticals, San Diego, CA
14. The Paediatric Liver Centre, Department of Child Health, King’s College Hospital, Denmark Hill, London, UK
Alagille syndrome is a rare cause of pediatric cholestasis

Alagille syndrome (ALGS) is a genetic, multisystem, developmental disease
- Autosomal dominant, with mutations in JAG1 (> 90% of cases) or NOTCH2
- Characterized by abnormalities of the liver, heart, eyes, vertebrae, kidney and facies
- Associated with growth deficit

Bile duct paucity leads to chronic cholestasis, severe pruritus and xanthomas
- Currently no approved pharmacological treatment options
- Liver transplantation (and at times partial external biliary diversion) are used to treat pruritus

Pharmacological inhibition of enterohepatic bile acid circulation may:
- Decrease serum bile acid (sBA) levels and pruritus
- Reduce cholesterol levels and xanthomas
Maralixibat is an oral, minimally absorbed, selective inhibitor of ASBT (apical sodium-dependent bile acid transporter).

Clinical effects of ASBT inhibition

- ASBT inhibitors, including maralixibat, decrease pruritus, sBA and cholesterol, and increase C4 in PBC\(^2-4\).
- Maralixibat shows a trend towards decreases in pruritus in ALGS\(^5\).

C4, 7-α-hydroxy-4-cholesten-3-one; CYP7A1, cholesterol 7α-hydroxylase; FGF, fibroblast growth factor; FXR, farnesoid X receptor; PBC, primary biliary cholangitis.

Objective: to explore the long-term efficacy and safety of maralixibat (400 µg/kg QD and BID) in children with ALGS.
Key eligibility criteria

- Children aged 1–18 years with ALGS (clinical and/or genetic criteria)
- Chronic cholestasis (clinical and/or biochemical criteria)
- Intractable pruritus (> 2 on Itch Reported Outcome [Observer] score - ItchRO[Obs]; 0–4)
- No biliary diversion, liver transplant or decompensated cirrhosis

Efficacy and safety assessments

- The following were assessed during the core study and at 12 weekly intervals during long-term extension:
 - Pruritus (caregiver-rated ItchRO[Obs]; 0–4)
 - Clinician Scratch Scale (CSS) score (investigator rated; 0–4)
 - Cholestasis and bile acid metabolism biomarkers (sBA, serum cholesterol, C4)
 - Clinician xanthoma scale score (investigator rated; 0–4)
 - Pediatric Quality of Life Inventory (PedsQL) fatigue scale score (caregiver rated; 0–100)
 - Height and weight z-score
 - Safety (treatment-emergent adverse events)
Disposition from the core to extension period

<table>
<thead>
<tr>
<th>Disposition</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrolled</td>
<td>31</td>
</tr>
<tr>
<td>Discontinued due to TEAE in core study a</td>
<td>3</td>
</tr>
<tr>
<td>Included in week 48 analysis</td>
<td>29</td>
</tr>
<tr>
<td>Consented to long-term extension</td>
<td>23</td>
</tr>
<tr>
<td>Withdrew consent</td>
<td>4</td>
</tr>
<tr>
<td>Liver transplant</td>
<td>2</td>
</tr>
<tr>
<td>Renal failure unrelated to maralixibat</td>
<td>1</td>
</tr>
<tr>
<td>Liver enzyme elevations</td>
<td>1</td>
</tr>
<tr>
<td>Included in week 191 efficacy analysis (3.7 years)</td>
<td>15</td>
</tr>
</tbody>
</table>

a Infection; intracranial bleeding; increased bilirubin levels; all unrelated to maralixibat

TEAE, treatment-emergent adverse event.
Baseline characteristics

<table>
<thead>
<tr>
<th>Baseline characteristics</th>
<th>Enrolled participants (N = 31)</th>
<th>Extension participants (N = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range), years</td>
<td>5.0 (1–15)</td>
<td>5.0 (1–12)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>19 (61.3)</td>
<td>10 (66.7)</td>
</tr>
<tr>
<td>JAG1 mutation, n (%)</td>
<td>31 (100.0)</td>
<td>15 (100.0)</td>
</tr>
<tr>
<td>Serum bile acid level, µmol/L</td>
<td>283.4 (37.8)</td>
<td>259.0 (55.3)</td>
</tr>
<tr>
<td>Total Bilirubin mg/dL</td>
<td>6.1 (1.0)</td>
<td>3.2 (0.9)</td>
</tr>
<tr>
<td>ItchRO(Obs) score (0-4)</td>
<td>2.9 (0.1)</td>
<td>2.8 (0.1)</td>
</tr>
<tr>
<td>CSS score (0-4)</td>
<td>3.3 (0.2)</td>
<td>3.2 (0.3)</td>
</tr>
<tr>
<td>Height z-score</td>
<td>−1.7 (0.2)</td>
<td>−1.8 (0.3)</td>
</tr>
</tbody>
</table>

Data presented as mean (SE) unless otherwise specified.
Study drug exposure for each participant

14/15 participants increased to 800 µg/kg/day
Reduction in mean serum bile acid levels was maintained long-term

Change from baseline, * \(p \leq 0.05 \), ** \(p \leq 0.01 \), *** \(p \leq 0.001 \) (overall population)
Mean pruritus scores reduced in the core study and were maintained in the extension.

Change from baseline, **** $p \leq 0.0001$ (overall population)
Serum bile acid levels and pruritus improved in the subgroup of patients treated long-term with maralixibat

Change from BL in sBA levels

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n = 15)</th>
<th>Core study (n = 15)</th>
<th>Long-term extension (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SE):</td>
<td>259.0 (55.3)</td>
<td>111.4 (33.9)</td>
<td>97.3 (33.8)</td>
</tr>
<tr>
<td>Change from BL</td>
<td></td>
<td>p = 0.0067 (BL to week 48)</td>
<td>p = 0.0047 (BL to week 191)</td>
</tr>
</tbody>
</table>

Change from BL in ItchRO(Obs) score (0–4)

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n = 15)</th>
<th>Core study (n = 15)</th>
<th>Long-term extension (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SE):</td>
<td>2.8 (0.1)</td>
<td>0.92 (0.2)</td>
<td>0.33 (0.2)</td>
</tr>
<tr>
<td>Change from BL</td>
<td></td>
<td>p < 0.0001 (BL to week 48)</td>
<td>p < 0.0001 (BL to week 193)</td>
</tr>
</tbody>
</table>
CSS and fatigue improved in the subgroup of patients treated long-term with maralixibat.

Change from BL in CSS score (0–4)

- **Baseline** (n = 15): Mean (SE): 3.2 (0.3)
- **Core study** (n = 15): 1.5 (0.4)
 \(p = 0.0003 \) (BL to week 48)
- **Long-term extension** (n = 15): 0.8 (0.4)
 \(p < 0.0001 \) (BL to week 191)

Change from BL in PedsQL fatigue scale score (0–100)

- **Baseline** (n = 14): 47.8 (5.9)
- **Core study** (n = 13): 74.8 (4.0)
 \(p = 0.0005 \) (BL to week 48)
- **Long-term extension** (n = 14): 65.9 (4.7)
 \(p = 0.0053 \) (BL to week 191)
Improvements from baseline in cholesterol levels and clinician xanthoma scores

Serum cholesterol and C4 levels

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Week 48</th>
<th>Week 191</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum cholesterol, mg/dL</td>
<td>414.3 (182.1)</td>
<td>340.3 (149.9)</td>
<td>277.5 (65.7)</td>
</tr>
<tr>
<td>C4, ng/mL</td>
<td>7.4 (8.7)</td>
<td>20.4 (32.2)</td>
<td>30.4 (44.6)</td>
</tr>
</tbody>
</table>

*p value^a:

- Serum cholesterol: < 0.01 and < 0.01
- C4: 0.1 and 0.04

^a Change from baseline
Increased height z-scores with long-term maralixibat treatment

Baseline z-score: -1.82 (SE, 0.3)

Week 191 z-score: -1.37 (SE, 0.3)

Change from baseline, * $p \leq 0.05$, ** $p \leq 0.01$
Long-term maralixibat treatment was well-tolerated

14 participants remain on maralixibat with median treatment duration of 1469.5 days (210 weeks; 4 years)

<table>
<thead>
<tr>
<th>Number of participants, n (%)</th>
<th>Core Study (week 0–18) (N = 31)</th>
<th>Core Study (week 19–22)</th>
<th>Core Study (week 23–48) (N = 29)</th>
<th>Extension Phase (week 49–present) (N = 29)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maralixibat (n = 13)</td>
<td>Placebo (n = 16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any TEAE</td>
<td>30 (96.8)</td>
<td>7 (53.8)</td>
<td>12 (75.0)</td>
<td>25 (86.2)</td>
</tr>
<tr>
<td>Grade 3 or 4 TEAE</td>
<td>6 (19.4)</td>
<td>0</td>
<td>1 (6.3)</td>
<td>2 (6.9)</td>
</tr>
<tr>
<td>Serious TEAE (all unrelated to maralixibat)</td>
<td>4 (12.9)</td>
<td>1 (7.7)</td>
<td>1 (6.3)</td>
<td>5 (17.2)</td>
</tr>
<tr>
<td>TEAE leading to death</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TEAE leading to study drug discontinuation</td>
<td>2 (6.5)a</td>
<td>0</td>
<td>0</td>
<td>1 (3.4)a</td>
</tr>
<tr>
<td>TEAE potentially related to study drug</td>
<td>12 (38.7)</td>
<td>1 (7.7)</td>
<td>3 (18.8)</td>
<td>1 (3.4)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>22 (71.0)</td>
<td>2 (15.4)</td>
<td>3 (18.8)</td>
<td>14 (48.3)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>13 (41.9)</td>
<td>1 (7.7)</td>
<td>1 (6.3)</td>
<td>5 (17.2)</td>
</tr>
</tbody>
</table>

a Infection; intracranial bleeding; increased bilirubin levels; all unrelated to maralixibat
b Elevated ALT and/or AST levels (n = 2); hypertension/renal failure unrelated to maralixibat (n = 1)
c Third discontinuation occurred after the data cut-off, bringing n to 14

ALT, alanine aminotransferase; AST, aspartate aminotransferase.
Four years of maralixibat treatment in the ICONIC study: summary and conclusions

- Long-term maralixibat treatment in ALGS patients was associated with significant and durable improvement in:
 - Pruritus and serum bile acids
 - Quality of life, cholesterol and xanthoma
 - Height growth

- Maralixibat was generally well tolerated up to 800 µg/kg per day for up to 4 years (total 73.1 patient years exposure)

- Treatment emergent adverse events did not increase in frequency or severity with long-term treatment
Acknowledgements

• Hôpital Universitaire Bicêtre, Paris, France
• University Hospital for Children and Adolescents, Tübingen, Germany
• Children’s Hospital at Westmead, Sydney, Australia
• Cliniques Universitaires Saint-Luc, Brussels, Belgium
• Royal Children’s Hospital Melbourne, Parkville, Australia
• Hôpital Universitaire Necker-Enfants malades, Paris, France
• Children's Memorial Health Institute, Warsaw, Poland
• Hospital Universitario La Paz, Madrid, Spain
• King’s College Hospital, Denmark Hill, London, UK