Durability of Treatment Effect with Long-Term Maralixibat in Children with Alagille Syndrome: 4-Year Safety and Efficacy

ICONIC Study

Emmanuel Gonzales

On behalf of Ekkehard Sturm, Michael Stormon, Etienne M. Sokal, Winita Hardikar, Florence Lacaille, Dorota Gliwicz-Miedzińska, Loreto Hierro, Thomas Jaecklin, Pamela Vig, Nirav K. Desai, Alejandro Dorenbaum, Ciara Kennedy, Alastair Baker, Emmanuel Jacquemin

Conflicts of interests

• Consultancy : Albireo, CTRS, Mirum Pharmaceuticals

Author affiliations

Emmanuel Gonzales,¹ Ekkehard Sturm,² Michael Stormon,³ Etienne M. Sokal,⁴ Winita Hardikar,⁵ Florence Lacaille,⁶ Dorota Gliwicz-Miedzińska,⁷ Loreto Hierro,⁸ Thomas Jaecklin,⁹ Pamela Vig,¹⁰ Nirav K. Desai,¹¹ Alejandro Dorenbaum,¹² Ciara Kennedy,¹³ Alastair Baker,¹⁴ Emmanuel Jacquemin¹

- 1. Hépatologie Pédiatrique, Hôpital Bicêtre, AP-HP, Université Paris Sud Paris Saclay, Paris, France
- 2. University Hospital for Children and Adolescents, Paediatric Gastroentrology/ Hepatology, Tübingen, Germany
- 3. The Children's Hospital at Westmead, Department of Gastroenterology, Westmead, Sydney, Australia
- 4. Cliniques Universitaires Saint-Luc, Gastropédiatrie, Brussels, Belgium
- 5. The Royal Children's Hospital Melbourne, Department of Gastroenterology, Parkville, Australia
- 6. Gastroenterology-Hepatology-Nutrition Unit, Hôpital Universitaire Necker-Enfants malades, Paris, France
- 7. Children's Memorial Health Institute, Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Warsaw, Poland
- 8. Hospital Universitario La Paz, Servicio de Hepatología y Trasplante, Madrid, Spain
- 9. Mirum Pharmaceuticals, Basel, Switzerland
- 10. Mirum Pharmaceuticals, Foster City, CA
- 11. Takeda Pharmaceuticals, Lexington & Cambridge, MA
- 12. Stanford University, Palo Alto, California
- 13. Amplyx Pharmaceuticals, San Diego, CA
- 14. The Paediatric Liver Centre, Department of Child Health, King's College Hospital, Denmark Hill, London, UK

Alagille syndrome is a rare cause of pediatric cholestasis

Alagille syndrome (ALGS) is a genetic, multisystem, developmental disease

- Autosomal dominant, with mutations in JAG1 (> 90% of cases) or NOTCH2
- Characterized by abnormalities of the liver, heart, eyes, vertebrae, kidney and facies
- Associated with growth deficit

Bile duct paucity leads to chronic cholestasis, severe pruritus and xanthomas

- Currently no approved pharmacological treatment options
- Liver transplantation (and at times partial external biliary diversion) are used to treat pruritus

Pharmacological inhibition of enterohepatic bile acid circulation may:

- Decrease serum bile acid (sBA) levels and pruritus
- Reduce cholesterol levels and xanthomas

Maralixibat is an oral, minimally absorbed, selective inhibitor of ASBT (apical sodium-dependent bile acid transporter)

Clinical effects of ASBT inhibition

- ASBT inhibitors, including maralixibat, decrease pruritus, sBA and cholesterol, and increase C4 in PBC^{2–4}
- Maralixibat shows a trend towards decreases in pruritus in ALGS⁵

C4, 7-a-hydroxy-4-cholesten-3-one; CYP7A1, cholesterol 7α-hydroxylase; FGF, fibroblast growth factor; FXR, farnesoid X receptor; PBC, primary biliary cholangitis.

1. Keller B et al. Poster 55 presented at the Falk Symposium 194, Oct 8–9, 2014, Freiburg, Germany; 2. Al-Dury S et al. Sci Rep 2018;8:6658; 3. Hegade VS et al. Lancet 2017;389:1114–23; 4. Mayo MJ et al. Hepatol Commun 2019;3:365–81; 5. Shneider BL et al. Hepatol Commun 2018;2:1184–98.

Long-term extension to the core ICONIC study

Objective: to explore the long-term efficacy and safety of maralixibat (400 µg/kg QD and BID) in children with ALGS

ICONIC study design

Key eligibility criteria

- Children aged 1–18 years with ALGS (clinical and/or genetic criteria)
- Chronic cholestasis (clinical and/or biochemical criteria)
- Intractable pruritus (> 2 on Itch Reported Outcome [Observer] score ItchRO[Obs]; 0–4)
- No biliary diversion, liver transplant or decompensated cirrhosis

Efficacy and safety assessments

- The following were assessed during the core study and at 12 weekly intervals during long-term extension:
 - Pruritus (caregiver-rated ltchRO[Obs]; 0–4)
 - Clinician Scratch Scale (CSS) score (investigator rated; 0–4)
 - Cholestasis and bile acid metabolism biomarkers (sBA, serum cholesterol, C4)
 - Clinician xanthoma scale score (investigator rated; 0–4)
 - Pediatric Quality of Life Inventory (PedsQL) fatigue scale score (caregiver rated; 0–100)
 - Height and weight z-score
 - Safety (treatment-emergent adverse events)

Disposition from the core to extension period

Disposition	Ν
Enrolled	31
Discontinued due to TEAE in core study $^{\alpha}$	3
Included in week 48 analysis	29
Consented to long-term extension	23
Withdrew consent	4
Liver transplant	2
Renal failure unrelated to maralixibat	1
Liver enzyme elevations	1
Included in week 191 efficacy analysis (3.7 years)	15

^a Infection; intracranial bleeding; increased bilirubin levels; all unrelated to maralixibat

Baseline characteristics

Baseline characteristics	Enrolled participants	Extension participants
	(N = 31)	(N = 15)
Median age (range), years	5.0 (1–15)	5.0 (1-12)
Male, n (%)	19 (61.3)	10 (66.7)
JAG1 mutation , n (%)	31 (100.0)	15 (100.0)
Serum bile acid level, µmol/L	283.4 (37.8)	259.0 (55.3)
Total Bilirubin mg/dL	6.1 (1.0)	3.2 (0.9)
ItchRO(Obs) score (0-4)	2.9 (0.1)	2.8 (0.1)
CSS score (0-4)	3.3 (0.2)	3.2 (0.3)
Height z-score	-1.7 (0.2)	-1.8 (0.3)

Data presented as mean (SE) unless otherwise specified.

Study drug exposure for each participant

		10,10	,,															j/kg/uuy	
-																			
			_																
	_																		
-	_		_			1.1													
-																			
			_					•	1	4/15	parti	cipa	nts in	crea	sed t	0 800) na \	ka/de	av
-										-,	Pan	Cipa					- M2/		чy
	_																		
																_			
-																-			
	_															_			
	_							-						_		-			
	_							-								-			
	_ _							-	_							-			
	_							-											
	_							-											
								-	-								_		
								-											
				-				-											
				-															
84	168	252	336	420	504	588	672	756	840	924	1008	1092	1176	1260	1344	1428	1512	1596	16
84	168	252	336	420	504	588	672	756 S	840 tudy do	924 IY	1008	1092	1176	1260	1344	1428	1512	1596	168

Reduction in mean serum bile acid levels was maintained long-term

Change from baseline, * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$ (overall population)

Mean pruritus scores reduced in the core study and were maintained in the extension

Change from baseline, **** $p \le 0.0001$ (overall population)

Serum bile acid levels and pruritus improved in the subgroup of patients treated long-term with maralixibat

Baseline Core study Long-term extension (n = 15)(n = 15)(n = 15)0 Mean (SE): Mean (SE) change from baseline 259.0 (55.3) $-50 \cdot$ in sBA levels (µmol/L) -100-111.4 97.3 (33.9)(33.8)-150--200 p = 0.0067p = 0.0047(BL to week 48) (BL to week 191) -250-

Change from BL in sBA levels

Change from BL in ItchRO(Obs) score (0-4)

CSS and fatigue improved in the subgroup of patients treated long-term with maralixibat

Change from BL in CSS score (0–4)

Change from BL in PedsQL fatigue scale score (0–100)

Improvements from baseline in cholesterol levels and clinician xanthoma scores

Serum cholesterol and C4 levels

Change from BL in clinician xanthoma scale score (0-4)

Mean	Baseline	Week 48	Week 191	
(SD)	n = 15	n = 15	n = 15	. 0 O
Serum cholesterol, mg/dL	414.3	340.3	277.5	aseline e scor
	(182.1)	(149.9)	(65.7)	om ba scale
p value ^a		< 0.01	< 0.01	ge fra
C4, ng/mL	7.4	20.4	30.4	chan xanth
	(8.7)	(32.2)	(44.6)	ician
p value ^a		0.1	0.04	Mear n clin

^a Change from baseline

Increased height z-scores with long-term maralixibat treatment

Baseline z-score: -1.82 (SE, 0.3)

Week 191 z-score: -1.37 (SE, 0.3) **BID** dosing **

Long-term maralixibat treatment was well-tolerated

14 participants remain on maralixibat with median treatment duration of 1469.5 days (210 weeks; 4 years)

	Core Study	Core Study (week 19–22)	Core Study	Extension Phase
Number of participants, n (%)	(week 0–18)	Maralixibat	Placebo	(week 23–48)	(week 49-present)
	(N = 31)	(n = 13)	(n = 16)	(N = 29)	(N = 29)
Any TEAE	30 (96.8)	7 (53.8)	12 (75.0)	25 (86.2)	23 (79.3)
Grade 3 or 4 TEAE	6 (19.4)	0	1 (6.3)	2 (6.9)	6 (20.7)
Serious TEAE (all unrelated to maralixibat)	4 (12.9)	1 (7.7)	1 (6.3)	5 (17.2)	5 (17.2)
TEAE leading to death	0	0	0	0	0
TEAE leading to study drug discontinuation	2 (6.5)ª	0	0	1 (3.4)ª	3 (10.3) ^{b,c}
TEAE potentially related to study drug	12 (38.7)	1 (7.7)	3 (18.8)	1 (3.4)	7 (24.1)
Gastrointestinal disorders	22 (71.0)	2 (15.4)	3 (18.8)	14 (48.3)	16 (55.2)
Diarrhea	13 (41.9)	1 (7.7)	1 (6.3)	5 (17.2)	8 (27.6)

^a Infection; intracranial bleeding; increased bilirubin levels; all unrelated to maralixibat

^b Elevated ALT and/or AST levels (n = 2); hypertension/renal failure unrelated to maralixibat (n = 1)

^c Third discontinuation occurred after the data cut-off, bringing n to 14

ALT, alanine aminotransferase; AST, aspartate aminotransferase.

Four years of maralixibat treatment in the ICONIC study: summary and conclusions

- Long-term maralizibat treatment in ALGS patients was associated with significant and durable improvement in:
 - Pruritus and serum bile acids
 - Quality of life, cholesterol and xanthoma
 - Height growth
- Maralizibat was generally well tolerated up to 800 µg/kg per day for up to 4 years (total 73.1 patient years exposure)
- Treatment emergent adverse events did not increase in frequency or severity with long-term treatment

Acknowledgements

- Hôpital Universitaire Bicêtre, Paris, France
- University Hospital for Children and Adolescents, Tübingen, Germany
- Children's Hospital at Westmead, Sydney, Australia
- Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Royal Children's Hospital Melbourne, Parkville, Australia
- Hôpital Universitaire Necker-Enfants malades, Paris, France
- Children's Memorial Health Institute, Warsaw, Poland
- Hospital Universitario La Paz, Madrid, Spain
- King's College Hospital, Denmark Hill, London, UK