Growth analysis in children with PFIC treated with the ASBT inhibitor maralixibat

INDIGO Study

Richard Thompson, Deirdre Kelly, Sanjay Rajwal, Alexander Miethke, Nisreen Soufi, Christine Rivet, Irena Jankowska, Cara Mack, Thomas Jaecklin, Robert H Squires, Kathleen M Loomes

Author affiliations

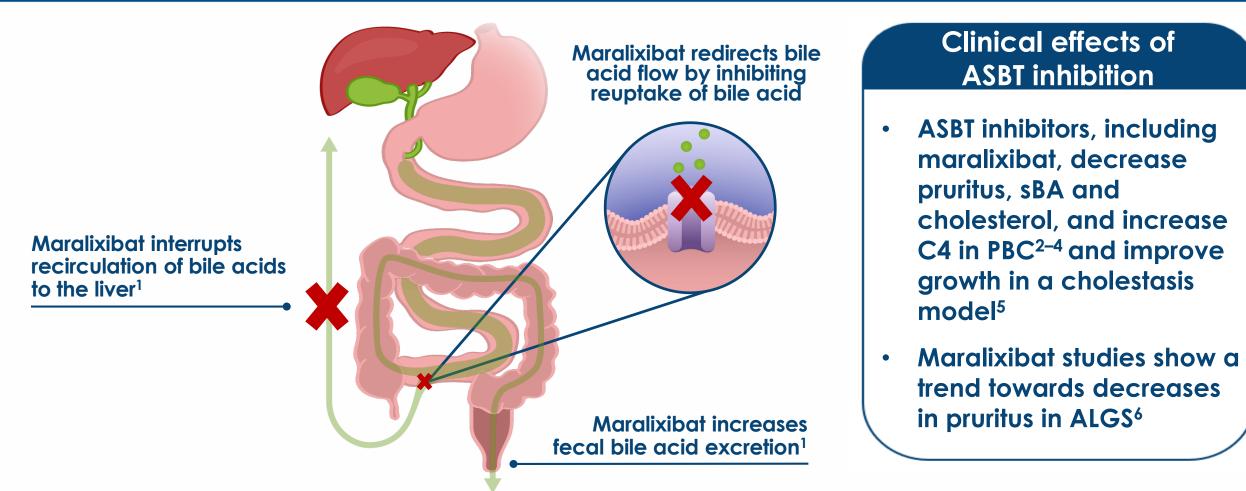
Richard Thompson,¹ Deirdre Kelly,² Sanjay Rajwal,³ Alexander Miethke,⁴ Nisreen Soufi,⁵ Christine Rivet,⁶ Irena Jankowska,⁷ Cara Mack,⁸ Thomas Jaecklin,⁹ Robert H Squires,¹⁰ Kathleen M Loomes¹¹

- 1. Institute of Liver Studies, King's College London, London, UK
- 2. Liver Unit, Birmingham Women's & Children's Hospital, Birmingham, UK
- 3. Leeds Teaching Hospitals NHS Trust, Great George Street, Leeds, UK
- 4. Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- 5. Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- 6. Service d'Hépatologie, Gastroentérologie et Nutrition Pédiatriques, Hôpital Femme-Mère-Enfant, Bron, France
- 7. Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
- 8. Section of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
- 9. Mirum Pharmaceuticals AG, Basel, Switzerland
- 10. Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- 11. Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Treatment of children with progressive familial intrahepatic cholestasis

• Progressive Familial Intrahepatic Cholestasis (PFIC)

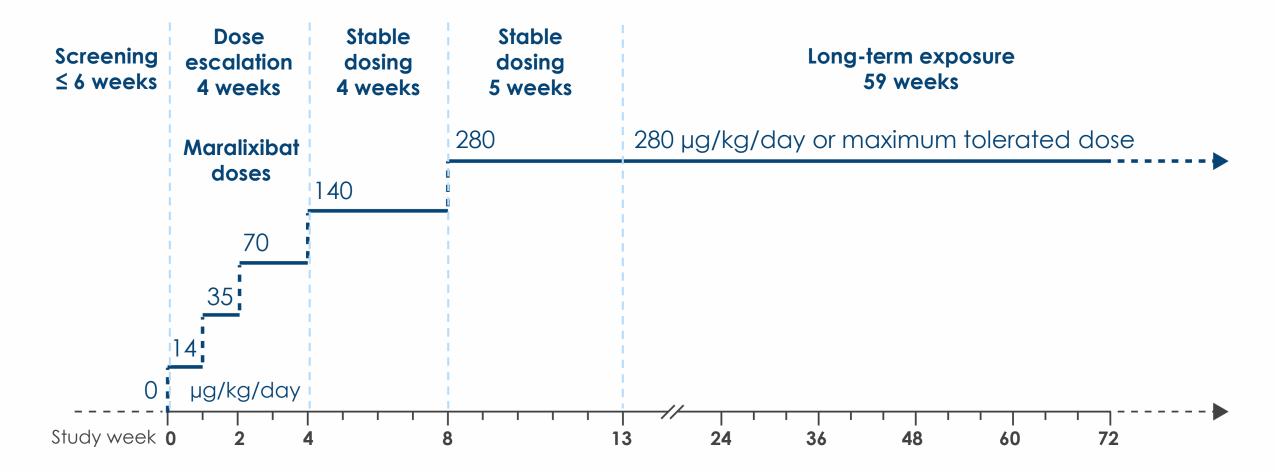
- A progressive childhood cholestatic liver disease
- Caused by rare genetic defects of bile acid excretion
- Leading to debilitating pruritus, lipid-soluble vitamin deficiency, growth deficit


Standard of care

- Pharmacotherapy is only partially/temporarily effective and off-label
- Partial external biliary diversion (PEBD) reduces serum bile acids (sBA) and pruritus, and improves growth, but may have serious complications
- Liver transplantation can treat pruritus, but complications/recurrence are not uncommon in PFIC

Maralixibat

- A potent, minimally absorbed, selective ASBTi (inhibitor of the ileal apical sodium-dependent bile acid transporter)
- Pharmacological interruption of enterohepatic bile acid recirculation may benefit patients with PFIC


Maralixibat is a potent, selective inhibitor of the ileal apical sodium-dependent bile acid transporter (ASBT)

ALGS, Alagille syndrome; C4, 7-a-hydroxy-4-cholesten-3-one; PBC, primary biliary cholangitis.

1. Keller B, Falk Symposium 2014, Freiburg, Germany; 2. Al-Dury S. Sci Rep 2018; 3. Hegade VS. Lancet 2017; 4. Shneider BL. Hepatol Commun 2018; 5. Miethke A. Hepatology 2016; 6. Mayo MJ. Hepatol Commun 2019;

INDIGO: phase 2, open-label, safety and efficacy study of maralixibat in children with PFIC

Results from a pre-specified 48-week analysis are presented (subsequent data are preliminary and are not available for all patients)

Key entry criteria and efficacy endpoints

Key inclusion criteria

- 1–18 years old
- PFIC phenotype
- PFIC genotype (biallelic ABCB11 or ATP8B1 mutation)

Key exclusion criteria

- PEBD or ileal exclusion
- Liver transplant
- Decompensated cirrhosis

Key efficacy endpoints

- Height and weight
- Cholestasis biomarkers
 - sBA (primary efficacy measure)
 - ALT, AST, bilirubin, C4
- Pruritus assessments
 - ItchRO(Obs) score (caregiver-rated pruritus; 0 = none, 4 = severe)
 - CSS score (investigator-rated, 0-4)
- HRQoL assessment
 - PedsQL total score (parent-rated, 0–100)

ALT, alanine aminotransferase; AST, aspartate aminotransferase; CSS, clinician scratch scale; HRQoL, health-related quality of life; ItchRO(Obs), Itch-Reported Outcome (Observer); PedsQL, Pediatric Quality of Life Inventory

Disposition, demographics, disease characteristics

Participant characteristics

Disposition to week 48

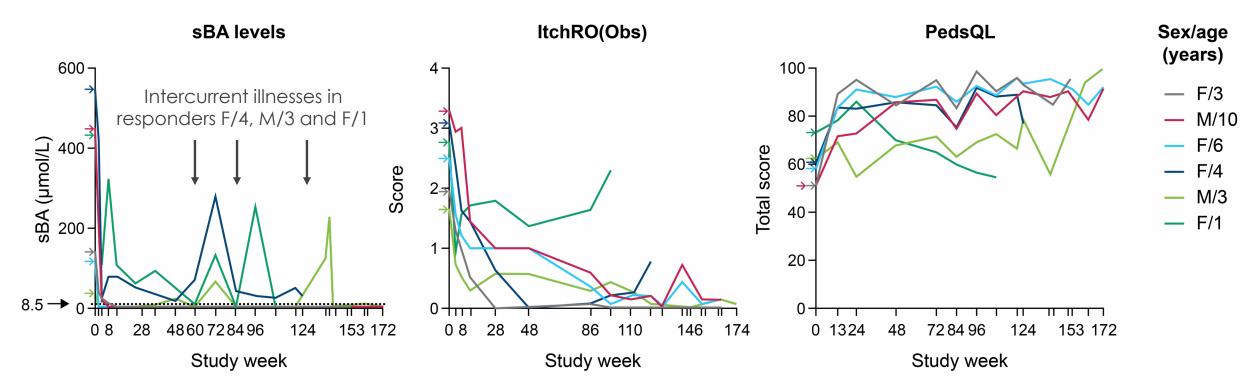
N = 33	PFIC1, n = 8 <i>ATP8B1</i>	PFIC2, n = 25 ABCB11		Participants (n)
Median age	2.0 (1–7)	4.0 (1–13)	Reached week 48	26
(range), year			Efficacy data available	
Boys, n (%)	6 (75)	8 (32)	PFIC1	6
White, n (%)	6 (75)	20 (80)	PFIC2	20
Mean (SD) z-scores			Maralixibat dose	
			280 µg/kg/day	23
Height	-2.96 (1.47)	-1.29 (0.98)	140 µg/kg/day	2
Weight	-2.70 (2.82)	-0.63 (0.88)	< 140 µg/kg/daya	1

^a One patient receiving 280 µg/kg/day had a treatment interruption and was re-escalating at week 48

Efficacy in overall PFIC2 population (n = 25)

After 48 weeks of treatment:

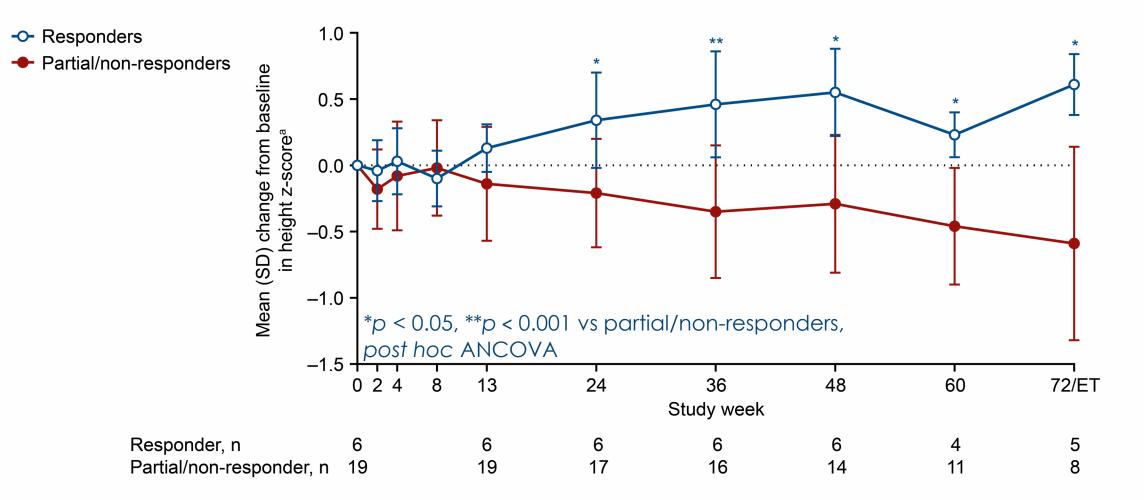
- Significant pruritus^a improvement
- Trend towards sBA improvement
- Trend towards QoL improvement
- No change in ALT or bilirubin


	Baseline Mean (range)	Week 48 Mean (95% CI)
ltchRO(Obs)	2.3 (0.1, 3.8)	-1.1 (-1.5 <i>, -</i> 0.6)
CSS	2.9 (0, 4)	-1.3 (-2.0, -0.6)
sBA [µmol/L]	381 (34, 602)	-59 (-157, 39)
PedsQL total	62.9 (34.5, 85.9)	4.4 (-4.0, 12.7)
C4 [ng/L]	4.6 (0.3, 47.3)	7.7 (-0.8, 16.1)

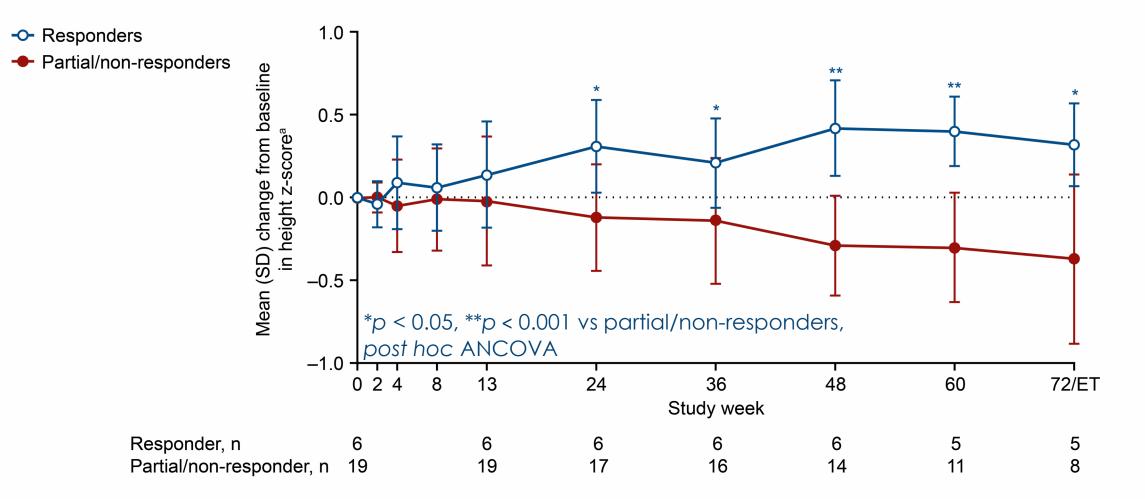
Part of the data presented by Thompson et al., AASLD 2017

^a Pruritus measured by ItchRO(Obs)

QoL: Quality of Life as measured by PedsQL; sBA: serum bile acids; CSS: Clinician Scratch Scale


Profound/sustained treatment response in n = 6

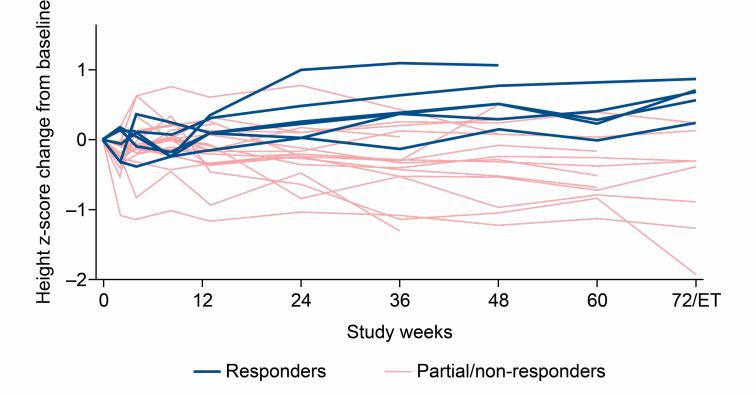
ResponsesBA levels - normalized ($\leq 8.5 \mu mol/L; n = 4$) or reduced $\geq 70\%$ from baseline (n = 2) <u>AND</u>criteria:ItchRO(Obs) - no pruritus (n = 2) or improved ≥ 1.0 points from baseline (n = 4)


Responder characteristics: All non-truncating PFIC2 (ABCB11) mutations, all on 280 µg/kg/day; no other predictive characteristics ALT, AST and bilirubin normalized, if elevated at baseline (ALT remained mildly elevated in responder F/1)

Height z-scores increased in PFIC2 responders vs decreased in partial/non-responders

^a z-score: number of standard deviations that a measure deviates from the mean value of healthy age-matched controls

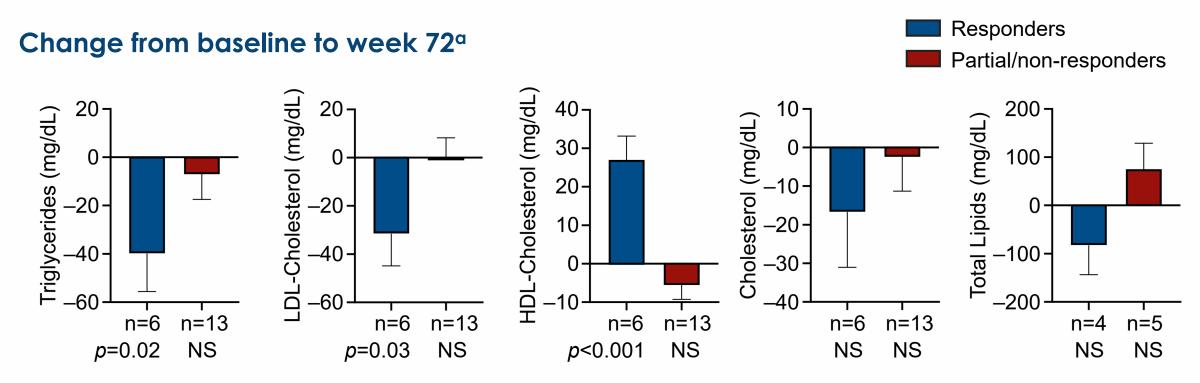
Weight z-scores increased in PFIC2 responders vs decreased in partial/non-responders



^a z-score: number of standard deviations that a measure deviates from the mean value of healthy age-matched controls

Improvements in growth may be related to disease modifications induced by maralixibat

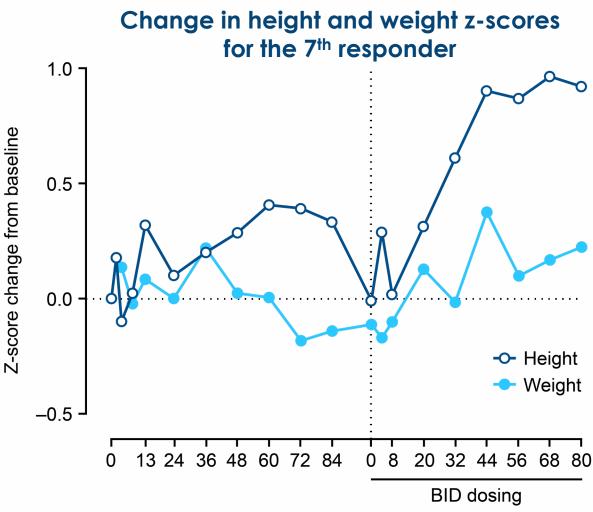
- Possible explanations for growth increases:
 - Pruritus relief?
 - Improved sleep?
 - Greater absorption of fats due to modified bile acid profile in the gut?
- Growth spurt with maralixibat comparable to those documented after PEBD^{1,2} or liver transplantation^{3,4}


Individual height z-scores change from baseline Consistent effect within each group

1. Arnell H. Pediatr Surg 2008; 2. Melter M. Am J Gastroenterol 2000; 3. El Moghazy WM. Liver Transpl 2010; 4. Pawlowska J. Ann Transplant 2010

Improvement of lipid profile in responders

• Response is associated with improvement in lipid profiles



- Changes in the serum lipid profile with maralixibat are comparable to those reported after PEBD¹
- ASBT inhibition upregulates hepatic LDL-receptor mRNA levels in a piglet model²

^a LS mean (SE). 1. Jankowska I. J Pediatr Gastroenterol Nutr 2016; 2. Huff MW. Arterioscler Thromb Vasc Biol 2002

Higher doses may lead to higher response rate

- Protocol amendment doubled maralixibat dose to 280 µg/kg BID
- 7th responder with PFIC2 manifested on BID treatment
- Growth benefit was reproducible after meeting response criteria
- Change in z-scores after starting BID dosing:
 - Height: +0.93
 - Weight: +0.34

Study week

BID, twice daily

Summary and conclusions

- Maralixibat leads to marked treatment benefit in a subset of children with PFIC2
 - Improvement in growth
 - Normalization or substantial reduction in sBA levels
 - Disappearance or substantial reduction in pruritus
 - Normalization of bilirubin and liver enzyme levels, if elevated at baseline
 - Improvement in lipid profile
 - Improvement in HRQoL
- Improvement in growth may be related to reductions in pruritus, better sleep or better fat absorption and may indicate disease-modifying potential of maralixibat
- A phase 3 study will be conducted to further investigate maralixibat in children with PFIC

Acknowledgments

- King's College London, UK
- Birmingham Children's Hospital, UK
- Leeds Teaching Hospitals NHS Trust, UK
- Cincinnati Children's Hospital, OH
- Children's Hospital Los Angeles, CA
- Hôpital Femme-Mère-Enfant, Bron, France
- Children's Memorial Health Institute, Warsaw, Poland
- Children's Hospital Colorado, Aurora, CO
- Children's Hospital of Pittsburgh, PA
- Children's Hospital of Philadelphia, PA