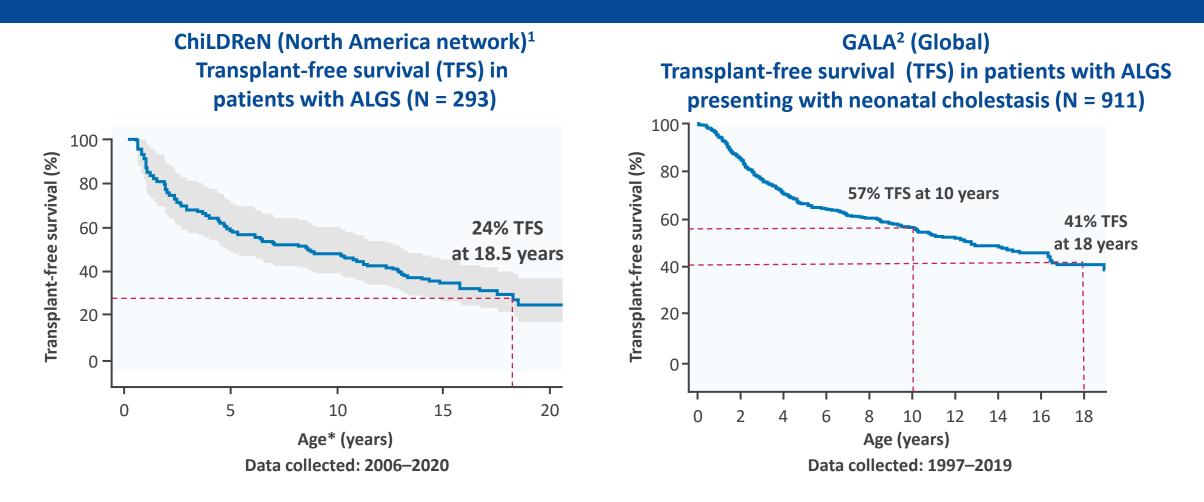
Predictors of 6-year event-free survival in patients with Alagille syndrome treated with maralixibat, an IBAT inhibitor

<u>Ronald J Sokol</u>,¹ Emmanuel Gonzales,² Binita M Kamath,³ Alastair Baker,⁴ Pamela Vig,⁵ Will Garner,⁵ Bettina E Hansen,⁶ Emmanuel Jacquemin,² Richard J Thompson⁷

¹Pediatric Gastroenterology, Hepatology and Nutrition and the Digestive Health Institute, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA; ²Hépatologie Pédiatrique, Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France; ³Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada; ⁴Paediatric Liver Centre, King's College Hospital, London, UK; ⁵Mirum Pharmaceuticals, Inc., Foster City, CA, USA; ⁶Toronto General Hospital and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; ⁷Institute of Liver Studies, King's College London, London, UK

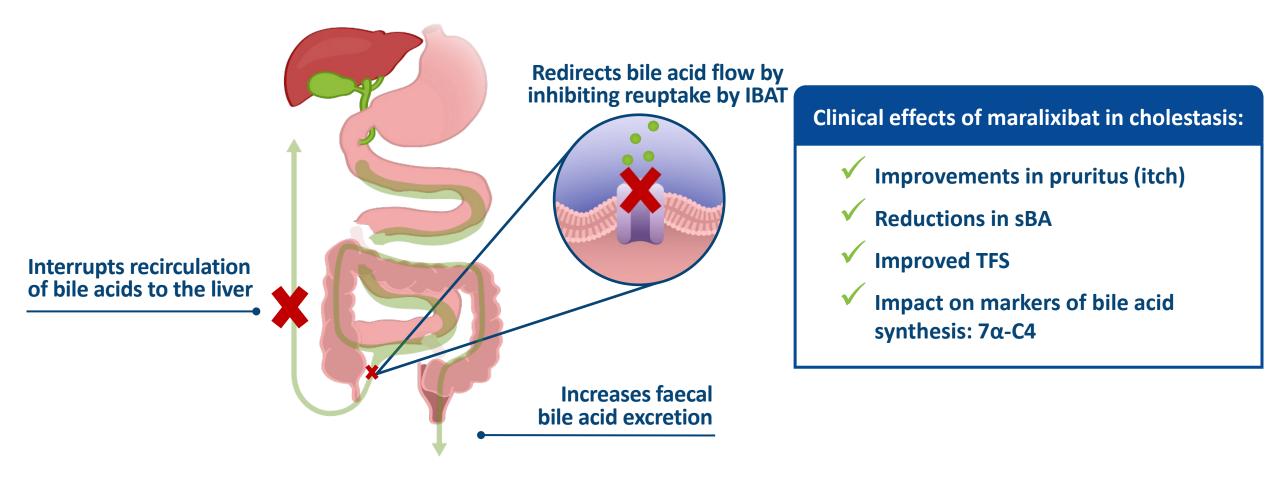

- Alagille syndrome (ALGS) is a debilitating, autosomal-dominant multisystemic disorder characterised by intrahepatic bile duct paucity and caused by mutations in JAGGED1 or NOTCH2^{1,2}
- ALGS is a rare disease with an incidence of 1 in 30,000–50,000 live births³
- The key liver-related clinical features of ALGS are cholestasis, jaundice and severe pruritus, as well as a broad range of other clinical manifestations^{4–7}
- Cholestatic pruritus and xanthomas represent a significant unaddressed clinical burden of disease, leading to greatly diminished quality of life⁷

1. Saleh M, et al. Appl Clin Genet 2016;9:75–82; 2. NORD. Alagille syndrome. Available at: https://rarediseases.org/rare-diseases/alagille-syndrome/. Accessed June 2022;

3. Leonard LD, et al. Eur J Hum Genet 2014;22:435; 4. Kamath BM, et al. J Pediatr Gastroenterol Nutr 2018;67:148–156; 5. Turnpenny P & Ellard S. Eur J Hum Genet 2012;20:251–257;

6. Berniczei-Royko A, et al. Med Sci Monit 2014;20:476–480; 7. Kamath BM, et al. Hepatol Communs 2020;4:387–398.

Substantial risk for liver transplantation in patients with ALGS


Refractory pruritus and progression of end-stage liver disease are indications for liver transplantation in patients with ALGS¹⁻³

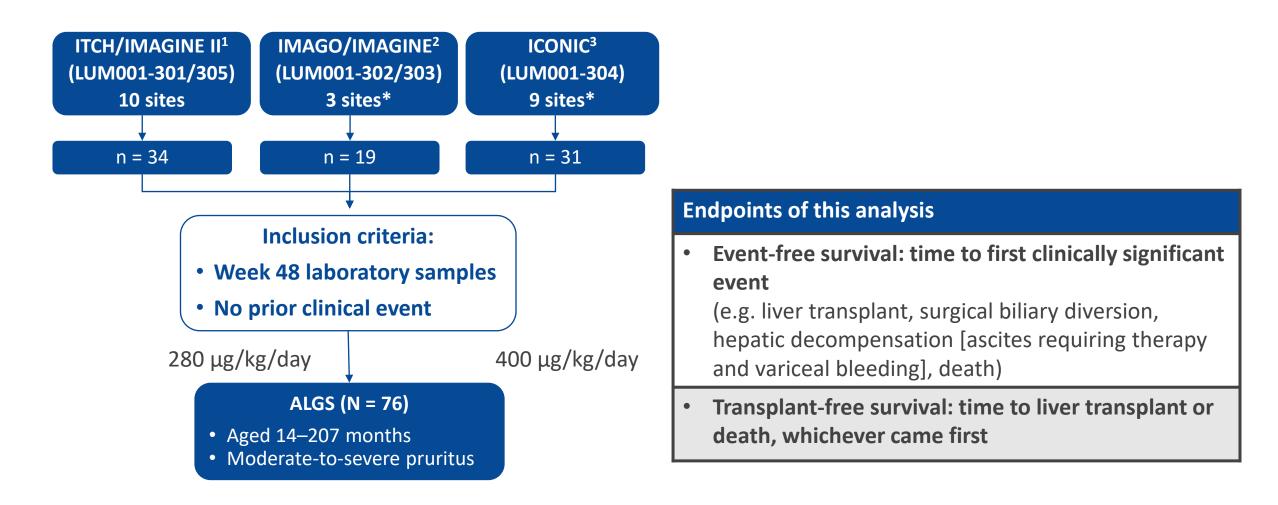
*Left truncated at baseline age.

ALGS, Alagille syndrome; TFS, transplant-free survival.

1. Kamath BM, et al. Hepatol Communs 2020;4:387–398; 2. Vandriel S, et al. J Hepatol 2020;73:S554–S555 (and associated poster presentation); 3. Wang KS, et al. Hepatology 2017;65:1645–1654.

Maralixibat: IBAT inhibitor that interrupts enterohepatic circulation

Maralixibat received FDA approval in 2021 for the treatment of cholestatic pruritus in patients with ALGS 1 year of age and older^{1,2}


FDA, US Food and Drug Administration; IBAT, ileal bile acid transporter; sBA, serum bile acid.

1. Gonzales E, *et al. Lancet* 2021;398:1581–1592; 2. Mirum Pharmaceuticals, Inc. LIVMARLI® (maralixibat) PI. 2021. Accessed online at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214662s001lbl.pdf on April 20, 2022. Figure reprinted from The Lancet, 398, Gonzales E, *et al.*, 'Efficacy and safety of maralixibat treatment in patients with Alagille syndrome and cholestatic pruritus (ICONIC): a randomised phase 2 study', 1581–1592, Copyright (2021), with permission from Elsevier.

To identify predictors of long-term event-free survival and transplant-free survival in patients with ALGS enrolled in three clinical trials of maralixibat,^{1–3} an ileal bile acid transporter inhibitor, with up to 6 years of follow-up

1. ClinicalTrials.gov ID: NCT02047318. Accessed online at: https://clinicaltrials.gov/ct2/show/NCT02047318 on February 28, 2022; 2. ClinicalTrials.gov ID: NCT02160782. Accessed online at: https://clinicaltrials.gov/ct2/show/NCT02160782 on February 28, 2022; 3. ClinicalTrials.gov ID: NCT02117713. Accessed online at: https://clinicaltrials.gov/ct2/show/NCT02160782 on February 28, 2022; 3. ClinicalTrials.gov ID: NCT02117713. Accessed online at: https://clinicaltrials.gov/ct2/show/NCT02117713 on February 28, 2022; 3. ClinicalTrials.gov ID: NCT02117713. Accessed online at: https://clinicaltrials.gov/ct2/show/NCT02117713 on February 28, 2022; 3. ClinicalTrials.gov ID: NCT02117713. Accessed online at: https://clinicaltrials.gov/ct2/show/NCT02117713 on February 28, 2022.

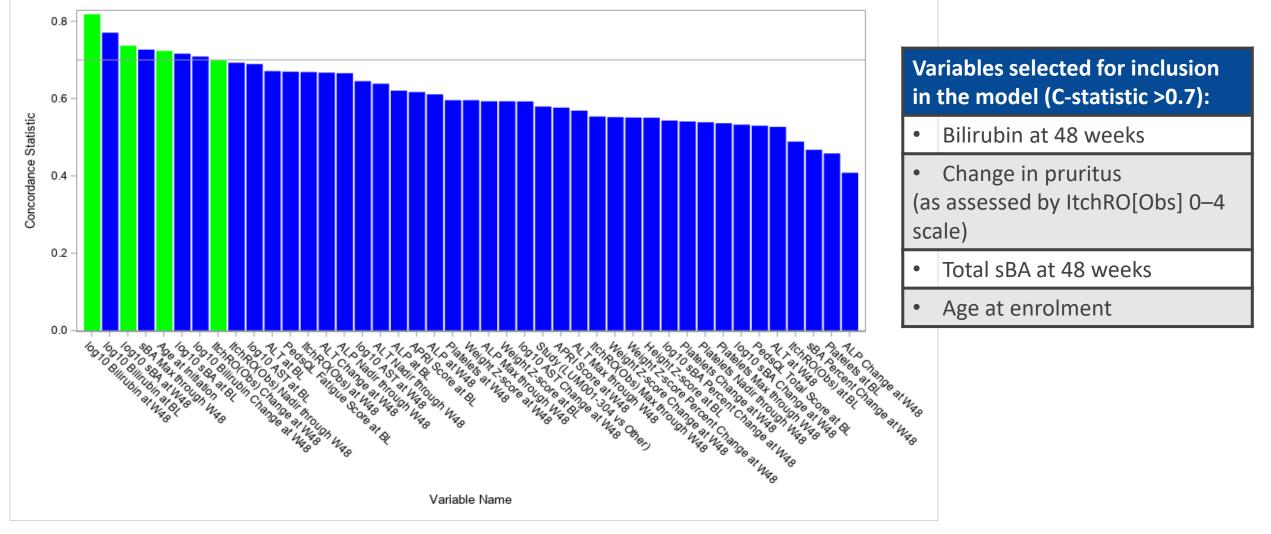
Methods: Study design

*There was a common site in both IMAGO/IMAGINE and ICONIC trials. The total number of different sites for the N = 76 overall study population was 21. 1. ClinicalTrials.gov ID: NCT02117713. Accessed online at: https://clinicaltrials.gov/ct2/show/NCT02117713 on February 28, 2022; 2. ClinicalTrials.gov ID: NCT02047318. Accessed online at:

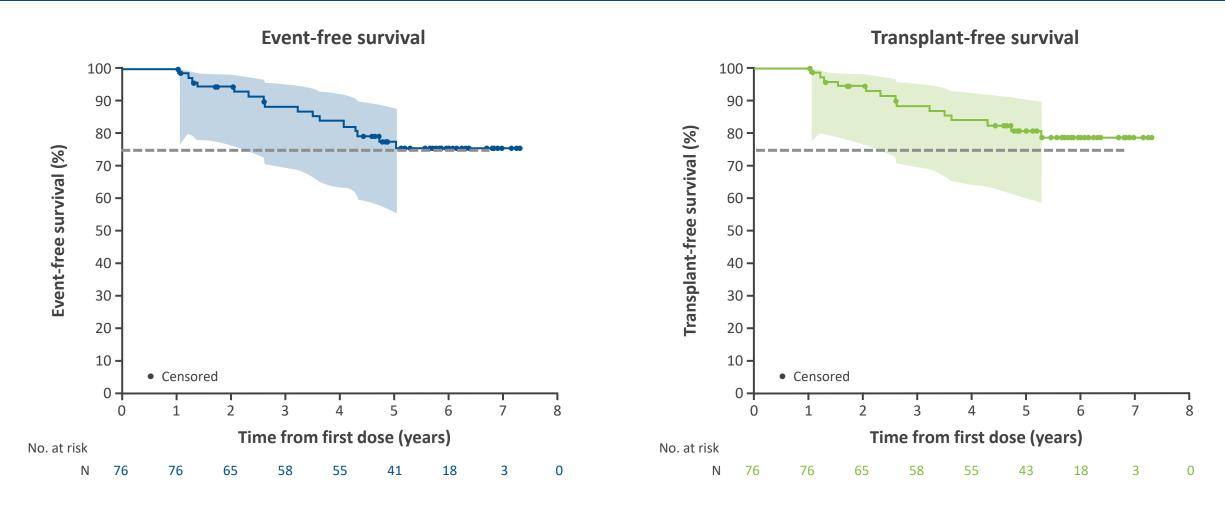
https://clinicaltrials.gov/ct2/show/NCT02047318 on February 28, 2022; 3. ClinicalTrials.gov ID: NCT02160782. Accessed online at: https://clinicaltrials.gov/ct2/show/NCT02160782 on February 28, 2022.

Methods: 43 variables included in the model

- The following variables were considered for inclusion in the model
 - Laboratory values (e.g. bilirubin, sBA, ALT)
 - Clinical values (e.g. ltchRO[Obs], weight, quality of life)
 - Demographics (e.g. age at enrolment)
 - Study characteristics (e.g. study number)
- Variables were considered at multiple timepoints, and as relative changes and absolute values
- Only variables that met a C-statistic threshold ≥0.7 were considered in the models

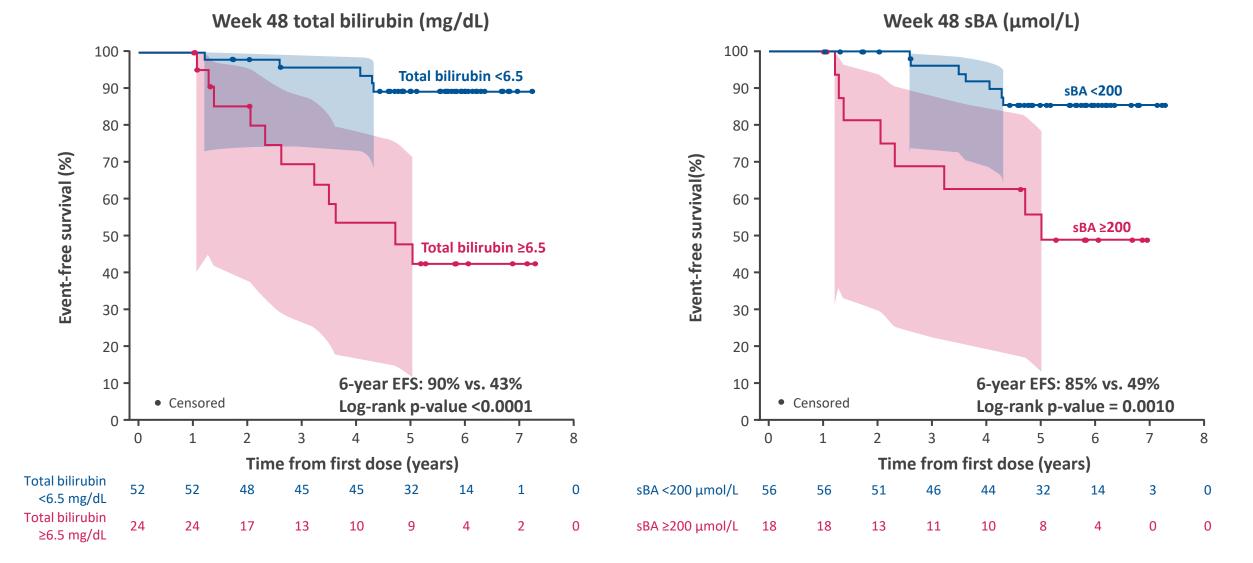

Baseline characteristics in maralixibat-treated patients with ALGS

Patients (N = 76)	Median (IQR)				
Age at first maralixibat dose, years	5.82 (2.76, 10.53)				
Male, n (%)	45 (59)				
Weight Z-score	-1.41 (-2.15, -0.67)				
ItchRO(Obs) weekly morning average score	2.71 (2.14, 3.14)				
Total sBA, μmol/L	184 (78, 361)				
Total bilirubin, mg/dL	2.3 (0.9, 8.4)				
Direct bilirubin, mg/dL	1.7 (0.6, 6.9)				
Albumin, g/dL	4.6 (4.3, 4.7)				
ALT, U/L	134 (95, 193)				
AST, U/L	130 (96, 185)				
GGT, U/L	392 (188, 751)				
Total cholesterol, mg/dL	313 (247, 456)				
INR	1.00 (1.00, 1.10)				
Platelets, 10 ⁹ /L	293 (223, 383)				

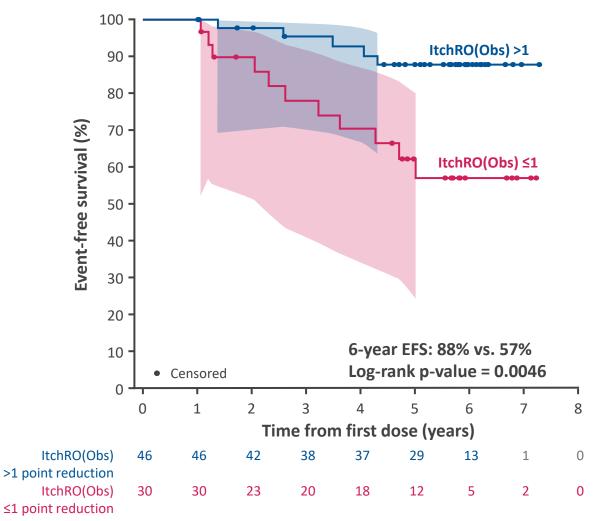

Median follow-up: 5.1 years (range 1.0–7.3)

Descending plot of C-statistics calculated for each variable in the model

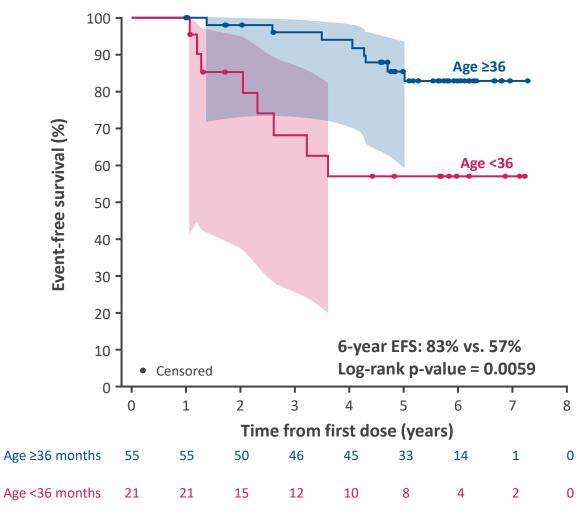
The four variables identified as predictors of event-free survival had high C-statistics over time, indicating that these cutoffs were stable predictors for 2–5 additional years after 48 weeks of maralixibat treatment


Most maralixibat-treated patients with ALGS remained event-free and transplant-free after 6 years

76% and 79% of maralixibat-treated patients with ALGS remained event-free and transplant-free, respectively, at 6 years after treatment initiation


Data values under each panel indicate the number of patients at risk for an event at each time point. Dashed line indicates 75% survival threshold.

Week 48 total bilirubin and sBA are significant predictors of event-free survival



Data values under each panel indicate the number of patients at risk for an event at each time point.

Pruritus reduction and age at enrolment are significant predictors of event-free survival

Change from baseline to week 48 ItchRO(Obs) (point reduction)

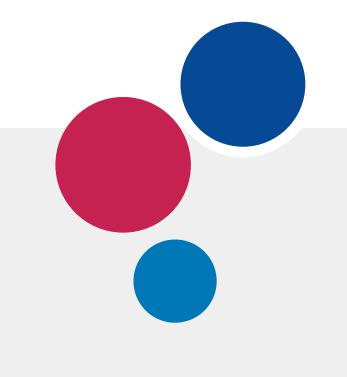
Age at enrolment (months)

Distribution of predictors of EFS among the maralixibat-treated population

<6.5 <6.5 ≥6.5 <6.5 <6.5 ≥6.5	<200 <200 <200	≥36 ≥36	>1 pt reduction≤1 pt reduction	30	89	2	
≥6.5 <6.5 <6.5	<200		≤1 pt reduction		05	0	
<6.5 <6.5		>20		9	- 89	89 1	
<6.5		≥36	>1 pt reduction	5			
	<200	<36	>1 pt reduction	5			
≥6.5	≥200	≥36	>1 pt reduction	2			
	≥200	≥36	>1 pt reduction	4	86	2	
<6.5	<200	<36	≤1 pt reduction	3			
<6.5	≥200	≥36	≤1 pt reduction	1			
≥6.5	<200	<36	≤1 pt reduction	4	29		
≥6.5	≥200	≥36	≤1 pt reduction	3		29 3	
<6.5	≥200	<36	≤1 pt reduction	1			
≥6.5	≥200	<36	≤1 pt reduction	7	33	4	

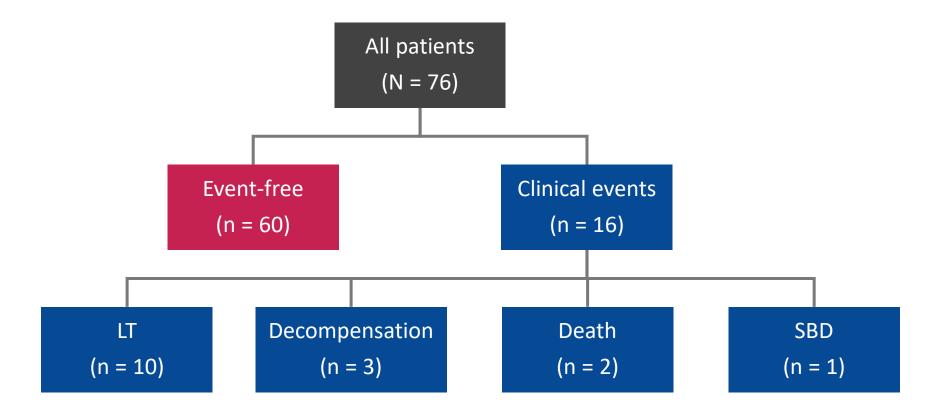
Two or more predictors of better event-free survival (EFS) result in an increase in 6-year EFS from 31% to 88%

Proportion with events does not account for censoring and is not a survival probability.

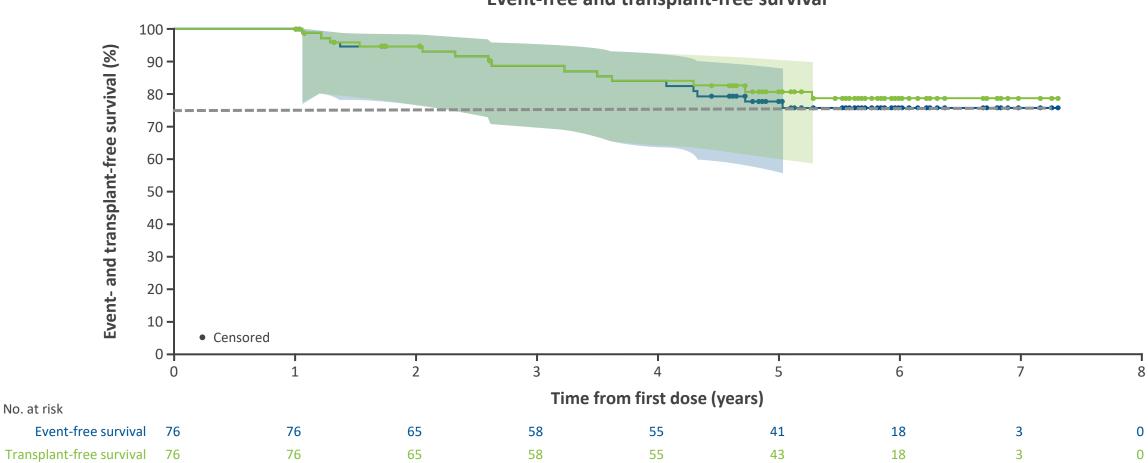

Variable	Better Transplant-free Survival	Worse Transplant-free Survival	p-value	
Mook 19 total bilinubin	<6.5 mg/dL	≥6.5 mg/dL		
Week 48 total bilirubin	n = 52	n = 24	<0.0001	
C-statistic: 0.85	6-year TFS: 94%	6-year TFS: 42%		
	<200 μmol/L	≥200 µmol/L		
Week 48 sBA	n = 56	n = 18	0.0001	
C-statistic: 0.79	6-year TFS: 90%	6-year TFS: 49%		
Change from baseline to week 48	>1 pt reduction	≤1 pt reduction		
ItchRO(Obs)	n = 46	n = 30	0.0007	
C-statistic: 0.77	6-year TFS: 93%	6-year TFS: 57%		
Age at enrolment	≥36 months	<36 months		
C-statistic: 0.74	n = 55	n = 21	0.0016	
	6-year TFS: 87%	6-year TFS: 57%		

Week 48 total bilirubin, week 48 sBA, change from baseline to week 48 in pruritus (ItchRO[Obs]), and age at enrolment were similarly predictive for event-free survival and transplant-free survival

- In patients with ALGS, predictors of long-term event-free survival with maralixibat treatment include:
 - Total bilirubin (at week 48), sBA (at week 48), pruritus reduction (from baseline to week 48), age at enrolment
- Most (>75%) maralixibat-treated patients with ALGS remained event-free and transplantfree after 6 years
- Improvement in pruritus is significantly associated with improved event-free survival and transplant-free survival
- These data identify potential prognostic markers that may better inform patient/provider discussions of clinical outcomes in patients with ALGS receiving maralixibat treatment



THANK YOU!



Most maralixibat-treated ALGS patients remained event-free and transplant-free after 6 years

Event-free and transplant-free survival

76% and 79% of maralixibat-treated patients with ALGS remained event-free and transplant-free, respectively, at 6 years after treatment initiation